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OF THERMAL DIFFUSIVITY IN AN UNCONFINED HOT GAS
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ABSTRACT: A pulsed CO 2 laser beam is used to produce a transient thermal
refractive-index-gradient in nitrogen gas doped with trace amounts of absorbing Freon 12
at temperatures from 25*C to 425°C. The diffusion of this gradient is probed by a
continuous HeNe laser beam parallel but displaced from the pulsed beam. The observed
deflection signal agrees well with the theory of Jackson et al. (1981), and thermal
diffusivity or gas temperature can be derived from the signal.
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The Photo-Thermal Probe-beam Deflection (PTPD) method developed by Boccara

and co-workers tl 5 has gained much attention recently as a noncontact spectroscopic

measurement tool in gases as well as in condensed matter. PTPD relies on the generation

of a thermal Refractive-Index-Gradient (RIG) in or near a sample due to the absorption

of a "pump" beam, and the detection of this RIG by a continuous probe beam. In most

PTPD work, 1"8 the pump beam is a continuous modulated laser beam obtained by

chopping at tens of Hz, and the probe beam deflection is modulated correspondingly.

However, Rose et al.9 have recently used a pulsed laser for PTPD spectroscopy in a

flame. The advantages of using pulsed laser are that much higher power is available and

also measurements related to a transient thermal RIG can be made.

We have made a first experimental investigation of the evolution of the transient

thermal RIG produced by a pump laser pulse and detected by a spatially separated probe

beam. Unlike the previous PTPD investigations which are mainly spectroscopic, we show

here that thermal diffusivity D or gas temperature can be obtained by analyzing the

time-dependent PTPD signal shape. This provides a new method for noncontact

monitoring of temperature or material composition that affect D. The present

experiment is designed to measure the thermal RIG in an unconfined hot gas to mimic an

open flame. It should be noted that a pulsed laser can also generate an acoustic RIG in a

flame observable with probe-beam deflection. 10

Our experimental apparatus is indicated in Fig. 1. The gas cell is made from a

block of aluminum alloy of dimension about 5 cmx4 cmx 1.8 cm. Suitable cavities are

made in the aluminum block to allow cartridge heaters to be inserted for heating of the

gas. Two open windows of dimension 2 mm x 5 mm allow the entrance and exit of the

laser beams. A slow stream of nitrogen with 0.11% Freon 12 (pre-mixed gas from
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Matheson) flows into the aluminum cell. The purpose of the low concentration of Freon

is to provide some weak absorption of the pump beam, which is a CO 2 laser beam at

10.834 jtm, with pulse width 150 I sec and peak power 50 Watt at 30 Hz repetition rate.

The gas flow rate is smaller than 10-2 cc/sec to ensure that the gas temperature in the

measurement chamber is at the cell temperature. Both CO2 laser beam and the probe

HeNe laser beam are focused at the center of the cell by a ZnSe lens of 125 mm focal

length and a glass lens of 250 mm focal length, respectively. The two laser beams are

parallel and in the same horizontal plane. They are separated by a displacement r that is

adjustable by an accurate translation platform carrying the HeNe laser and its focusing

lens and the photodetector. The cell, the CO 2 laser beam with the ZnSe focusing lens and

the KRS-5 beam splitter are fixed in position. The horizontal geometry of the two laser

beams is used to minimize any effects due to flow or convection, as indicated in Sell's

work. 8 The HeNe laser beam emerging from the cell is transmitted through a quartz plate

'(which blocks the CO 2 laser beam); after some suitable propagation distance, the

defocused HeNe laser beam is incident on a small aperture which is positioned

asymmetrically with respect to the probe beam cross section. This aperture is used 11,12

to convert a probe deflection into an intensity variation, which is monitored by a

photodiode-amplifer assembly (UDT model 600). The photodiode signal S(r,t) is

digitized by a Tektronix 7854 oscilloscope, which accumulates the signal and transmits it

to a personal computer (IBM PC) via an IEEE 488 bus. The IBM PC stores the signal,

prints it on a matrix printer, as well as generates theoretical signals to compare with the

experimental ones.

The theoretical PTPD signal shape S(r,t) can be derived according to the work of

Jackson et al.4 In their Eq. (28), they show that a pulsed laser beam of Gaussian radius
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a, energy E0 and pulse duration to produces a temperature gradient OT/cr in an infinite

medium with weak absorption coefficient a given by

aT _ -aE 0  -2r 2  -exp( -2r 2

Or 2rktor exp a2 + 8Dt a - 8D(t- to)

for t>t0 . Here t is the time measured from the starting of the laser pulse and k is the

thermal conductivity of the medium. The corresponding1 1 probe defection angle O(r,t) is

t(r,t) c On OT(r,t) (2)
no ZT Or

where I the interaction path length (z1.8 cm in our experiment), no is the ambient

refractive index of the gas and cln/t7T is the temperature coefficient of the refractive

index. The observed signal at the photodiode is (for small deflection angles)

S(r,t) = GI,(r,)LO(rt) (3)

where G is a constant depending on the photodiode sensitivity and gain, IP(rl) is the

lateral spatial derivative of the probe beam intensity distribution at the aperture position

r, and L is the "lever arm" of the probe beam (i.e., distance from the cell center to the

aperture and is about 22 cm in our experiment). Combining Eqs. (1)-(3), we have

S(r,t) K aE 0 r2r2 -exp ( 2

- r lexp a2 + 8Dt a + 8D(t-t )

where

K 49n GI (rl)L (5)
2irkt0 no aT

is independent of t and r. Equation (4) is valid for t>t0 , and is the basis of pulsed PTPD

measurement. It shows that a can be measured as a function of excitation wavelength, as

• _* * f .,*r , ... . , , ' . . .. q =
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done in previous PTPD measurements. 1 -9 It also shows that D can be measured by fitting

the observed signal shape S(r,t) to the form in the square bracket in Eq. (4), as done in

the present work.

Our signal observed on the oscilloscope for x=0.126 cm and cell temperature

TC=25°C is shown in Fig. 2. Here, we see that the photodiode signal has a fast

component and a slow component. The fast component is not appreciably delayed from

the laser pulse on the scope time scale of 1 ms/div; this component is due to the acoustic

RIG probe-beam deflection effect, 10 "12 which occurs at a time delay of about 4.2 Asec

from the laser pulse for a sound speed of 3 x 104 cm/sec. The signal variation after the

initial sharp spike is due to the thermal RIG and follows the shape indicated in Eq. (4).

The signals averaged for 100 laser shots stored in the computer for two cell

temperatures Tc are shown in Fig. 3. The signal magnitude is observed to decrease as

temperature increases, in accordance with Eq. (2), since an/0T goes as T- 2 for an ideal

gas. We clearly see that the signal peak moves to earlier times as temperature increases,

indicating that thermal diffusivity D increases with temperature. By fitting Eq. (4) to

the observed signals, we can obtain the theoretical signals shown in Fig. 3 with the values

of Dfi t as indicated. These theoretical curves are calculated with the following

parameters: laser pulse width= 150 ttsec, excitation beam Gaussian radius=0.07 cm, and

separation between excitation and probe beam=0.105 cm. In reality, the excitation beam

is not Gaussian but has annular structures, so that the theoretical fits are not perfect.

Table 1 indicates some of our experimental results for a range of cell temperature

Tc. The fitted diffusivity values Dfit increases very substantially with temperature. The

dependence of thermal diffusivity on temperature for N2 at 1 atmosphere has been
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extensively measured in the literature, 13-17 generally with the use of wires or probes

inserted into the gas. Using the diffusivity data listed by Rutherford et al. 13 (which is

consistant with data from other workers), we can convert the measured Dfit in Table I

into corresponding averaged gas temperature Tg. We see that Tg is generally somewhat

cooler than the cell body temperature Tc. This is probably due to cooling effects

occurring at the windows.

In conclusion, we have demonstrated a noncontact pulsed PTPD measurement in an A

unconfined hot gas for monitoring thermal diffusivity or the related temperature. The

observed signal shape S(r,t) agrees well with the theoretical form of Jackson et al.4 Such

a nonintrusive method should be valuable for measurements in situ in open medium like

flames or in other hostile environments.
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Table 1

Cell Temperature, Fitted Thermal Diffusivity
From the Signal and the Corresponding Average
Gas Temperature Based on Literature (Ref. 13)

Tc(O C) Drit (CM 2 /sec) Tg9(0c)

25 0.21 25
48 0.230 42
79 0.258 64

.31 0.32 110
155 0.369 141
222 0.47 205
233 0.498 221
312 0.574 267
423 0.810 386

V 777,p
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